Regimes and Long Memory in Realized Volatility *

Elena Goldman'
Department of Finance and Economics, Lubin School of Business
Pace University, One Pace Plaza, NY 10038
tel: 212-618-6516, egoldman@pace.edu

Jouahn Nam
Department of Finance and Economics, Lubin School of Business
Pace University, One Pace Plaza, NY 10038
tel: 212-618-6528, jnam@pace.edu

Hiroki Tsurumi
Department of Economics, Rutgers University
75 Hamilton Street, New Brunswick, NJ 08901
tel: 732- 932-7932, tsurumi@econ.rutgers.edu

Jun Wang
Department of Economics and Finance, Baruch College
One Bernard Baruch Way, New York, NY 10010
tel: 646-312-3507, jun wang@baruch.cuny.edu

*The authors would like to thank econometrics seminar participants at Rutgers University and
the Seminar on Bayesian Inference in Econometrics and Statistics (SBIES). We thank Dr. Evgeny
Goldman for his comments on the comparison of the mean squared errors distributions and Gayatri
Jaganath for her excellent research assistance.

fCorresponding author.



Abstract

We analyze the dynamics of realized variance and bipower variation of daily
stock returns of 30 companies in the Dow Jones index using a threshold frac-
tionally integrated autoregressive and moving average model. We find that the
logarithmic transformation of the square root of realized variance and bipower
variation processes can be characterized by high and low volatility regimes and
that the persistence, long memory and variance differ in regimes. Also, we find
that forecast models using realized variance perform better than models using
bipower variation. The high volatility regime is explained better by realized
variance than by bipower variation. We find that the two regime threshold frac-
tionally integrated autoregressive and moving average model that accounts for
different degrees of long memory, persistence and variance in two regimes out-
performs the fractionally integrated autoregressive and moving average model
commonly used in the literature. A new test based on posterior distributions
of the mean squared forecast errors (MSE) is used for model selection.

Keywords: realized volatility, threshold regimes, forecasting, Bayesian model
selection.



1 Introduction

Volatility is an important measure in many financial applications such as option
pricing, risk management and portfolio optimization. In addition volatility is a trad-
able asset where buyers and sellers gain or lose depending on volatility realized until
maturity. Since the Chicago Board Options Exchange (CBOE) introduced option
trading on the volatility of the S&P500 index (VIX), many volatility-based deriva-
tives have been introduced in the option markets. Trading in volatility derivatives
attracted many investors since it provided more tools for managing portfolio risk,
option positions and exploiting the leverage effect of negative correlation between
volatility movements and stock index returns.® As the volatility derivative markets
grew, research on volatilities has expanded, and realized volatility based on high-
frequency returns has become a popular measure of volatility.

Since Andersen and Bollerslev (1997) introduced the concept of realized volatil-
ity there has been considerable interest in its distribution, modeling, and forecast-
ing. Fleming et al (2003) show the economic value of using realized volatility for
portfolio optimization. A risk-averse investor can improve the performance of her
mean-variance efficient portfolio when she switches from daily to intra-daily measure
of variances and covariances for volatility timing. Andersen et al (2001a), and Ander-
sen et al (2001b) provide distribution of logarithmic transform of realized volatility
of foreign exchange returns and stock returns respectively. Andersen et al (2003)
(ABDL 2003) used a fractional autoregressive model in order to account for the long
memory properties of realized volatility and found that these forecasts are better than
forecasts produced by many popular models of volatility, e.g. daily GARCH, Risk-
Metrics, and FIEGARCH. However spikes in realized volatility and nonlinearities in
the dynamics are not incorporated in these models.

Barndorff-Nielsen and Shephard (2004) introduced bipower variation in order to
separate jumps from the realized variance. Maheu and McCurdy (2002) emphasized
nonlinear features of realized volatility for the DM /$ exchange rate and found that one
day forecasts from a duration dependent Markov-switching ARMA model are better
than from linear models. However their model is restrictive to two regimes with an
unobservable state variable determining the regime and no analysis of long memory
properties. Additional papers that used Markov-switching models for international
equity returns and volatilities include Ang and Bekaert (2004, 2002), Ramchand and
Susmel (1998), Guidolin and Timmermann (2002), and Liu and Maheu (2008) among
others.

1See e.g. Hafner and Wallmeier (2008) who analyzed variance swap positions for optimal portfolio
investments.



As an approximation to a long memory ARFIMA process several papers used a
heterogeneous autoregressive model (HAR) (see Corsi (2009), Liu and Maheu (2008)
and McAleer and Medeiros (2008) among others). We do not consider this approx-
imation for long memory, since we show an efficient way of joint estimation of the
fractionally differenced parameters d and threshold parameters » in ARFIMA and
TARFIMA models considered below. However, for the future research it would be
interesting to compare HAR and ARFIMA models.

There are several papers that provide alternative measures of realized volatility
adjusting for microstructure noise (see Bandi et.al (2008), Ait-Sahalia and Mancini
(2008), etc). In the presence of microstructure noise if sampled at high frequency
intervals the realized volatility can become a biased estimate of daily volatility since
noise can be time dependent and correlated with closing prices. However, as suggested
in Andersen et al. (2001) if the data is sampled at a lower frequency (they suggested
5 minutes) the realized volatility is a good estimate in practice. In this paper we do
not study microstructure noise and possible adjustments, rather, we proceed with 5-
minute intra-daily returns (excluding holidays and non-trading hours) obtained from
the NYSE Trade and Quote (TAQ) database.

In this paper, we use a multiple regime threshold fractionally integrated autore-
gressive and moving average model (TARFIMA) model to analyze realized variance
and bipower variation. The advantage of the TARFIMA model is that it is more flex-
ible than a linear model since it is characterized by regimes with different persistence,
long memory and variance, thus accounting for asymmetric dynamics in regimes.
Compared to Markov-switching models threshold models use a threshold variable
determining the regimes based on observable past level of volatility or some other
observable variable? rather than random switching with an unobservable variable de-
termining the state. Threshold models allow the explicit estimation of threshold levels
of volatility that change with regimes.

The TARFIMA model can capture the difference in dynamics of high and low
volatility regimes. One of the prominent features of the data are frequent spikes in
realized volatility and bipower variation. Although bipower variation removes some
jumps there are still many spikes in the data that can be observed in a regime of high
volatility. The TARFIMA model introduced here is quite general because the param-
eters of ARMA, long memory and variance change with regime and because it allows
us to find multiple threshold regimes.® In particular, we investigate nonlinearities in

20ne could use past level of the return rather than volatility as a threshold variable. This choice
of the threshold variable may reflect the leverage effect, which is the asymmetric effect of negative
and positive returns on volatility.

3Many recent papers use Threshold Autoregressive (TAR) models in economic and financial time
series to model the dynamics of short-term interest rates, real exchange rates, unemployment rate,



the dynamics of realized daily variance and bipower variation of stock returns of 30
companies in the Dow Jones Index.

We find that the logarithms of two volatility processes can be characterized by
two regimes of high and low volatility. The persistence, long memory and variance
change with each regime. This model helps us understand better the dynamics of
intra daily returns and improves forecasts compared to linear ARMA and fractional
ARMA (ARFIMA) models since forecasts based on estimated thresholds regimes of
high or low volatility can be predicted separately. This information indicates the
difference in investors behavior in high and low volatility regimes. The high volatility
regime is characterized by a higher variation in realized volatility which arises because
of increased activity in the market. On the other hand the higher volatility regime
may have higher transaction costs and thus higher long memory parameter. Also
abrupt shifts in volatility may induce long memory characteristics. On the other
hand the regimes of high volatility are short-lived and mean-reverting as we find from
autoregressive roots.

We also show that short lived spikes in realized volatility captured by upper
regimes are important in modeling and forecasting. We show that realized vari-
ance generally produces a better forecast than bipower variation for the stocks in
the Dow Jones index, since the former contains more information about the spikes
incorporated in the dynamics of a high volatility regime.

The TARFIMA model is estimated using Bayesian Markov Chain Monte Carlo
(MCMC) algorithms with efficient jump as an extension of the algorithm in Gold-
man and Agbeyegbe (2007). The algorithm is extended for the fractional integration
parameter d. The Metropolis-Hastings algorithm with efficient jump allows us to esti-
mate jointly parameters of all regimes and threshold parameters. For model selection
and specification several in-sample techniques are used such as information criteria,
significance of parameters and estimation with and without truncation restrictions
imposed on thresholds.

The out-of-sample forecast performance is used in this paper for comparison of
TARFIMA, ARFIMA and ARMA models. We suggest comparison based on the
distributions of mean squared errors (MSE). We illustrate a test of the dominance of
the cumulative density for one model over other models. Using MCMC such a test
is easy to implement and it incorporates the whole distribution of MSE rather than
the point estimate frequently used in the literature for forecast evaluation.

stock prices, production, and inventories. See e.g. Tsay (1989,1998); Hansen (1997); Koop and
Potter (1999); Phann et al (1996); Forbes et al(1999); Goldman and Agbeyegbe (2007), Dufrenot et
al. (2008) among others.



Our paper contributes to the literature of modelling realized volatility as the first
to apply a TARFIMA model with estimated thresholds, changing long memory pa-
rameters and variance. We also provide a test for MSE to select the best model.
We show that TARFIMA model provides a better fit to the realized volatility pro-
cesses than the benchmark linear fractionally integrated model. So far in the realized
volatility literature fractional autoregressive models are known to produce forecasts
that are better than the forecasts of other models (ABDL 2003). Our results show
that TARFIMA models tend to outperform ARFIMA models for realized volatility
of individual equity returns in the DJ index. Thus TARFIMA models with several
regimes may provide more benefit to investors in the areas of portfolio optimization
and risk management.

The plan of the paper is as follows. In Section 2 we provide the TARFIMA
and ARFIMA models and a Bayesian test of persistence, long memory and mean-
reversion. In Section 3 we explain estimation results for logarithms of realized variance
and bipower variation. In section 4 we perform forecasts and model comparisons for
TARFIMA, ARFIMA and ARMA models. In Section 5 we give concluding remarks
and plans for future research. Appendix with Bayesian posterior distributions and
MCMC algorithms is in section 6.

2 Model

The term realized variance RV was introduced by Andersen and Bollerslev (1997)
as the sum of squared intra-day returns:

RV;‘/ = Z Tt2+TA

where r,,,a are returns for small intra-daily periods of length A within a day ¢.
Five-minute returns are accepted by many studies as a norm.* Realized volatility is
defined as the square root of realized variance RV'/2.

Barndorff-Nielsen and Shephard (2004) suggested using the bipower variation BV
in order to separate jumps from the total daily variation. With number of observations
within a day going to infinity it is given by

BV, =7/2 Z ’Tt+(T—1)A [7erral

4Higher frequencies may result in microstructure problems (see Ait-Sahalia, Mykland and Zhang,
2005).



In the literature that measures separately the continuous part of total realized vari-
ance measured by BV; and jumps (RV; — BV}) the statistics for determining the
significance of jumps is based on the size of the relative jump as defined by Huang

RV, — BV,
and Tauchen (2005), <#) . This implies that on the days when volatility is
t

high the jump may not be detected if the size of the relative jump is not large, while
on low volatility days a smaller increase in volatility may qualify as a jump.®

In our study we find that instead of separating BV, and jumps we can look at
several regimes of the realized variance and compare the dynamics of high and low
volatility regimes. Since we also know from previous studies (e.g. ABDL 2003) that
realized volatility exhibits long memory we propose using a threshold fractionally in-
tegrated model with regimes that are characterized by different time series dynamics,
variance and long memory parameters in each regime.

The regimes are determined by an observed threshold variable. In our case it is
the past level of realized variance, for example, the lagged realized variance above the
threshold level will determine the high volatility regime®. In this model the highest
volatility regime will be short-lived since overall variance is stationary. The current
level of volatility will determine the forecast of the next period state (or regime) and
will contain valuable information for portfolio diversification (see Ang and Bekaert
(2002, 2004)).

In addition, the distribution of the logarithm of realized volatility may be better
captured by a mixture of several normal distributions from several regimes rather than
one normal distribution. The mixture of normal distributions can approximate well
any distribution (Ferguson (1973)). Thus, the threshold model with several regimes
is expected to better fit the unknown distribution of the data.”

In the next two subsections we describe the ARFIMA and TARFIMA models.

°See Bollerslev et al. (2008) for the data example illustrating this point.

6 Alternatively past level of returns could be chosen as a threshold variable.

TAlthough the logarithm of realized variance looks normal, statistical tests (e.g. Jarque Bera
test) often reject normality.



2.1 Fractionally Integrated ARMA (ARFIMA) Model

Let y; = ln(RV;l/ %) or ln(BVf/ ?). The fractionally integrated ARMA model
(ARFIMA) is given by

1-B)' = xry+uw (1)
_ e(B)
Uy = <I>(B)Et

OB) = 1+6B+---+6,B7
®B) = 1-¢B—---—¢,B°
€~ N(O, 02)

where d is a long memory fractional integration parameter, v is a vector of regression
parameters for x explanatory variables®, o2 is variance (showing variation in realized
volatility), ®(B) and ©(B) are p-th order and g¢-th order polynomials in the the
backward shift (lag) operator B respectively. For d > —1 the difference operator
(I — B)? has the binomial expansion

(I-B)'=) mB (2)
=0
where
0<k<j
When p = ¢ = 0, Brockwell and Davis (1987) state that {y;} is a covariance stationary

process if —.5 < d <.5. If 0 < d < 1 the ARFIMA model is called a long memory
process.

81n the simplest case  is a constant term.



2.2 Fractionally Integrated Threshold ARMA Model (TARFIMA)

Let us consider the following dynamic threshold ARFIMA model (TARFIMA)
with multiple regimes for logarithm of realized variance or bipower variation y, =

In(RV;"?) or In(BV;"/?)

(1 — B)d(j)yt = QTt’Y(j) + Ut (3)
G(j)(B)
T gu(B) (4)

e ~ N(0, (O'(j))2)

where j=1,...,s+1 with s+1 regimes defined by

(j =1 Yis < T1
J = 2 r1 < Yos < T

(5)
\j - S—|—1 yt—dZTs

We assume in the model above that there are s thresholds 7y, rs, ..., 75 separating
s+1 regimes for ;. The threshold variable y;_; is an observable previous day volatility
level with delay parameter, d, set to one (§ = 1).2 The error term follows ARMA
process u; ~ ARMA (pt9), ¢)), where ®)(B) and ©U)(B) are p')-th order and ¢)-th
order polynomials in the backward shift operator B respectively.

We note that each parameter in this model {y"), $() 1) 52 ()} takes s+ 1 values
depending on the regime j where y;_s belongs. This allows a change in dynamics,
persistence, and variance of realized volatility depending on regime.

2.3 Testing Nonstationarity and Mean Reversion

In the ARFIMA and TARFIMA models there are two sources of nonstationarity:
fractional integration parameter d and the roots of ®(B). Let p denote the maximum
absolute value of the inverse roots of the AR parameters in the error term u;. We

90ne can use any lag of volatility or a combination of several lags, but our analysis shows that
the previous day provided the best fit for the model using MBIC criterion.



will test for the mean reversion of realized volatility y; looking at the long mem-
ory parameter d) and at the autoregressive root parameter p¥) in each regime. A
simple Bayesian unit root test using the maximum absolute value of inverted roots
of AR parameters p was introduced in Goldman et al (2001) and we use the same
method in this paper. It is important to test the null hypothesis of nonstationarity,
since nonstationarity implies high persistence and long memory of time series. The
nonstationarity hypothesis in our setting is jointly given by:

Ho: p>1 wversus Hy: 0<p <1

and
Hyp:|d| > 0.5 wversus H;: —0.5< d< 0.5

Although covariance stationarity requires d < 0.5 there is still mean reversion if
values of 0 < d < 1 and the AR process is stationary. Diebold and Inoue (2001)
define a long memory mean-reverting fractionally integrated process for 0 < d < 1.
Mean reversion for 0.5 < d < 1 was illustrated for real exchange rates in Diebold et al
(1991) and formally proved for ARFIMA(p, d,q) time series in Chung (2001). Both
papers showed that impulse response functions converge to zero.

In the Bayesian approach it is common to use the highest posterior density inter-
vals (HPDI) for hypothesis testing. One could construct a joint HPDI involving both
parameters (e.g. for p + d?), however, intuitively it is easier to interpret these two
parameters separately. If the 95% HPDI includes 1 for p or includes 1 for d we would
not reject a unit root. If the HPDI for p does not include 1 and HPDI for d is within
[-0.5,0.5] we would conclude that the process is stationary. If the HPDI for p does
not include 1 and HPDI for d does not include 1 we would conclude that the process
is mean-reverting even if d > 0.5. Finally if the HPDI for d is positive and does not
include 0 we conclude that the time series exhibits long memory.

2.4 Model Choice

After TARFIMA, ARFIMA and ARMA models are estimated using Markov Chain
Monte Carlo (MCMC) algorithms with efficient jump, explained in Appendix, we
compare models based on the distribution of their out-of-sample mean squared errors
(MSE). MSE is the most common overall measure of forecast accuracy measuring av-
erage squared deviations of forecasted values from observed values.!® Using MCMC

10The mean squared errors are commonly used in the classical statistics. The Bayesian analogue
of this popular measure is used in this paper.



we can get the posterior distributions of the MSE for each model as explained be-
low. The model with MSE distribution that dominates all other distributions using
cumulative density function (CDF) is chosen over other models.!

The distributions of mean squared errors are obtained as follows. We estimate the
model for the sample of data 1...T and make h-step ahead repeated forecasts based
on the fixed sample estimates of parameters. At each i—th draw of all parameters
6% we find the predicted values of

@%—)I—lelu e Y1, 0(2))
géﬂrQ‘(yla < Yty ngrla H(Z)>

@¥1h|(y17”'7yT7?;¥3_17‘ 7y’§33'_h 1,9(1/)).

Using MCMC algorithms we obtain the draws of MSE for the predicted values of
gTJer j:17 7h:
) IS0
MSE® = h Z@Tﬂ' - yT+j)2
j=1

where gjéfzr] is the i-th MCMC draw of the predicted value at time 7"+ j and yry; is

the realized value at T' + j.

The mean forecast errors (ME) are average differences between predicted values
from MCMC draws and actual values of yr1;,j =1,...,h:

h
; 1
MEY = EZ yT+] Yr+j)-

The mean error measures average bias (positive or negative) and is another measure
of accuracy. Using MCMC we obtained the distribution of MSE and ME for each
out-of-sample observation.

The CDF of the distribution of MSE closest to zero indicates which model has the
best forecast accuracy. The model selection is based on min MSE for the posterior
modes or medians of their distributions. Since the distribution of MSE taking only
positive values is heavily skewed to the right it makes sense to use the mode or median
rather than the mean of distribution.!?

11We note here the advantage of using a Bayesian approach where posterior distributions of any
parameters of interest are easily obtained using MCMC draws as explained below. It is common in
current forecasting literature to provide the distribution of forecasts rather that a point forecast.

12The mean is highly affected by skewness compared to median or mode of asymmetric distribu-
tions.



If we have m posterior predictive densities for repeated 1 day or 5 day forecasts
we can find the average of the modes (or medians) of all distributions. For example:

1 m
MMSE; = — de;(MSE|M;
" mode; (MSE|M)

J=1

where MMSE; is the average of modes of forecasts for model M;. We choose the
minimum of MMSE:

min MMSE;
ief1,..3}

among 3 competing models.

3 Data Analysis

The models are estimated for log realized volatilities and bipower variation of
stock returns for 30 companies in the Dow Jones index. The data obtained from the
TAQ database are 5-minute returns from January 4, 1993 to December 31, 2004. The
corresponding daily realized variance and bipower variation have 3021 observations of
trading days except for five companies for which the data starts later.!®> We used data
from 1/1/1994 to 7/29/2003 for estimation and the last 360 observations (7/30/2003-
12/31/2004) were left for out-of-sample forecast evaluation.

Figure 1 shows the realized volatility RV'/? and the square root of bipower vari-
ation BV'/2 for three stocks: GE, MSFT and HPQ. These three graphs represent
typical features of volatility. We can observe multiple spikes in realized volatility
and bipower variation with a slight difference in the magnitude. Bipower variation
is slightly smoother but still captures most of the spikes as can be seen from the
graphs. The difference between the graphs for the three stocks is the magnitude of
spikes. For either RVY/? or BV'/? we observe the most extreme spike for MSFT on
April 1, 1997 and frequent smaller size spikes on other dates. For GE we observe
two extreme spikes of lower magnitude than for MSF'T with many smaller spikes and
for HP(Q there are no extreme spikes; we observe only frequent spikes of smaller size.
The advantage of using the TARFIMA model with two regimes is that it explicitly
allows us to account for spikes, that can be defined once volatility is above a certain

threshold level.

13The five companies with less than 3021 trading days are HPQ (671 obs), MO (3023 obs), C
(3010 obs), XOM (1278 obs), and VZ(1130 obs) as can be seen from Tables 1 and 2.

10



Tables 1 and 2 give summary statistics of the In(RV'/2) and In(BV'/2) for 30 com-
panies showing number of observations (number of trading days), mean, standard
deviation, first order autocorrelation, skewness, kurtosis, and estimated fractional-
differencing parameter d°¢ with asymptotic standard error using Geweke and Porter-
Hudak (GPH) (1983) log - periodogram. Following ABDL 2003 using d° we can exam-
ine long memory properties of realized volatility and bipower variation. In the follow-
ing sections we compare estimated results and forecasting performance of ARFIMA
and TARFIMA models. We see that the GPH fractional parameter for 30 companies
ranges from 0.373 to 0.553 with standard errors 0.027 and 0.042 respectively. For the
In(BV1/2) the results are almost identical to In(RV'/?). The periodogram estimates
of d¢ all seem to indicate long memory processes with statistically significant d > 0.
However, we also notice that most series are highly autocorrelated with the first de-
gree autocorrelation AR(1) around 0.6-0.7. The GPH estimator is simple to apply,
but as pointed out in Baillie (1996) among others it is substantially biased in the
presence of significant autocorrelation. Therefore, we prefer to use joint estimation of
the fractional parameter with ARMA parameters using MCMC as described in the
previous section.

The results of the estimated TARFIMA model (3)-(5) for 30 equity returns are
given in Table 3. The second and third columns give estimated thresholds with pos-
terior standard deviations in brackets for RV'/? and BV'/? correspondingly. The
forth and fifth columns give the percent of observations in the regime of low volatil-
ity below the threshold. The sixth to ninth columns give the estimated maximum
absolute value of autoregressive roots in each regime, where regime 1 is below the
threshold and regime 2 is above the threshold. The last four columns give estimates
of fractional integration parameters d for each regime of RV'/? and BV'/2. We pro-
vide mean and standard deviation for each parameter in each regime.'* Using MBIC
information criterion we find the number of regimes and orders of ARMA model in
each regime. For all 30 companies we found that models with 2 regimes are preferred
to three regimes and the orders of ARMA(1,1) were selected for the TARFIMA model
in all regimes.!®

The dynamics in the lower regime are generally more persistent than in the upper
regime as can be seen from the maximum absolute value of the AR roots given in
Table 3. For regime 1 the AR root ranges from 0.158 to 0.982 and the AR coefficient
¢ is positive and significant (using 95% HPDI ) for 17 out of 30 stocks. For the rest
of the stocks the AR parameter in regime 1 is positive and insignificant except for 1

14The 95% HPDISs are omitted here to save space. They are available from the authors on request.

15The results of order (1,1) are not surprising since the ARFIMA (p,d,q) model is equivalent to the
infinite lag ARMA model. Thus, the fractional integration parameter d takes care of higher order
lags.

11



stock when it is negative.'® For regime 2 the AR root presented in Table 3 ranges from
0.103 to 0.527 with the AR parameter always insignificantly different from zero and
negative (in one case). Thus regime 2 shows the mean reversion in the autoregressive
part once volatility is above the threshold level. The unit root hypothesis using 95%
HPDI (as explained at the end of the section 2) is rejected for all series as all 95%
HPDIs are below one for the AR parameter. The implication of this result is that in
most cases abrupt spikes in volatility are not persistent and volatility quickly reverts
back to the lower regime of normal volatility. By normal volatility we mean volatility
below the estimated threshold values given in the second column of Table 3. The
average value of the threshold for volatility is 0.859 and the corresponding average
percentage of observations in the lower volatility regime is 80%. This confirms that
most of the time volatility stayed at a normal level and spikes form a significant
regime accounting for 20% of observations.

It is interesting that results for the bipower variation are very similar. The level
of the threshold is slightly lower due to the removal of a few spikes by the definition
of BV. The average value of the threshold is 0.754 which corresponds to 78% of
observations in the lower regime. For the lower regime the AR parameter is positive
and significant in 19 cases and insignificant for the rest of the stocks. For the upper
regime the AR parameter is insignificant in 28 cases, significant and negative in
one case and positive in one case. For all regimes we reject the unit root for AR
parameters.

The long memory fractional integration parameters are positive and significant
for all 30 stocks in both regimes showing that both in(RV'/2) and In(BV'/?) exhibit
long memory in both regimes. If we compare two regimes the long memory parameter
d is on average higher in regime 2 than in regime 1. The 95% HPDI for parameter
d is within the interval (0,1) for all cases except one.!” The 95% HPDI is within the
interval (0, 0.5) only for 4 stocks in regime 2. Therefore, the long memory parameter
shows high persistence although as discussed in section 2.3 the volatility is still mean-
reverting. Long memory results for the bipower variation are very similar to the
realized volatility results.

We also found that o2, the variance of log volatility In(RV'/?) in equations (3)-
(5), is in most cases significantly higher for the upper regime compared to the lower

16Results for AR parameters ¢ are omitted to save space-they are similar to rho = the maximum
absolute value of AR root (presented in Tables 3,6, 9) except for the sign of ¢ when negative. Results
are available from the authors on request.

1"For XOM the 95% HPDI in regime 2 is [0.53, 1.09] with the upper bound very close to 1. Since
number of in-sample observations for XOM is about one third of observations for most stocks and
the estimation of TARFIMA model includes many parameters it results in higher standard deviation
and wider confidence interval.

12



regime. Spikes in realized volatility are characterized by a higher variance of volatility,
while a lower regime of volatility has more persistence and smaller variance.

The results of estimated ARFIMA model (1) are given in Table 6. The second
and third columns give estimated maximum absolute value of autoregressive roots for
RV'/2 and BV'/? correspondingly. The last two columns give estimates of fractional

integration parameters d. For all 30 companies the orders of ARMA(1,1) were selected
using MBIC criterion. Orders are the same as for the TARFIMA model.

Compared to the TARFIMA model the results for a one regime ARFIMA model
are different in several respects. First, the AR root is higher for the ARFIMA model,
showing higher persistence compared to both regimes of the TARFIMA model. The
upper bound of the maximum autoregressive root is very close to 1 for 21 stocks out
of 30 stocks.!® Thus it is very close to unit root rejecting it only marginally. On
the other hand in all 21 cases the 95% HPDI is d < 0.5 and for the remaining 9
cases 0.5 < d < 1. Long memory parameter is statistically insignificant (d = 0) for
3 firms. Overall, the results show that there is more persistence in AR parameters
and less degree of a long memory for the ARFIMA model compared to a two-regime
TARFIMA model. For the bipower variation the maximum AR root is very close to
1 for 16 stocks and is positive and significant for the rest. On the other hand the
long memory parameter is less than 0.5 for 11 cases and is zero for 1 case. Thus both
realized variance and bipower variation show higher persistence in AR parameter and
less degree of long memory in ARFIMA model compared to two-regime TARFIMA
model.

Finally in the third column of Table 9 we shows the results for the maximum
autoregressive root for a simple benchmark ARMA(1,1) model for In(RV*/2).19 The
results for In(BV1/?) are omitted as they are almost identical. The average AR
parameter is 0.959 and the upper bound of the 95% HPDI is between .9460 and .9999
for 30 stocks. Although the unit root is rejected the persistence in AR is higher for the
simple ARMA(1,1) that ignores long memory compared to ARFIMA or TARFIMA
models.

This information indicates the difference in investors behavior in high and low
volatility regimes. The high volatility regime is characterized by higher variation
in realized volatility which arises because of increased activity of the market. On
the other hand the higher volatility regime may have higher transaction costs and
thus a higher long memory parameter as we find for the TARFIMA model in Table
3. As observed in the literature abrupt shifts in volatility may induce long memory

18The 95% HPDI upper bound is above 0.99 in 16 cases and above 0.98 in 21 cases.
9The orders of ARMA model were set to (1,1) for simplicity. Higher orders were significant up
to a month as realized volatility series exhibit long memory.
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characteristics (see Andersen and Bollerslev (1998)). Dufrenot et al. (2008) among
others discuss how herding mechanism may result in changing volatility and long
memory. On the other hand the regimes of high volatility are short-lived and mean-
reverting as we see from AR roots.

In the following section we discuss the forecasting performance of each model.

4 Forecasting and Model Comparison

In this section we compare the forecasting performance of the TARFIMA model
with linear ARFIMA and ARMA models using realized volatility and bipower varia-
tion. Estimates of each model were first obtained for the in-sample period 1/1/1994
to 7/29/2003 (given in Tables 3, 6 and 9) and then used for repeated 1 and 5 day out-
of-sample forecasts for the last 360 days (7/30/2003-12/31/2004). ABDL 2003 used
the fractionally integrated autoregressive model in order to account for long mem-
ory properties of realized volatility and found that their forecasts are better than
forecasts produced by many popular models of volatility, e.g. daily GARCH, Risk-
Metrics, and FIEGARCH. Our TARFIMA model allows use of the information about
the thresholds to predict regimes of high or low volatility and different dynamics in
each regime.

In Tables 4, 5, 7, 8 and 9 we present average posterior modes and medians of
mean squared errors (MSE) and mean errors (ME) for 1 and 5 day forecasts for all
models. Tables 4 and 5 show results for RV/? and BV'/? for the TARFIMA model.
Tables 7 and 8 show results for the ARFIMA model and Table 9 shows results for
ARMA model® for RV/2.

If we compare the results for RV'/? and BV'/? models we make the following
observations. One day average modes of MSE for the TARFIMA RV'/2 model are
for all companies smaller or equal to the 1 day average MSE modes of the TARFIMA
BV'2 model showing that RV'/? produces a more accurate forecast. For the MSE
at median again the RV'/? forecasts outperform BV'/? except for 2 cases. Similarly
for the ARFIMA model in most cases MSE is smaller for realized volatility models
compared to bipower variation models. MSE is generally smaller for models with
RV/2 since realized volatility contains more information about spikes. At the same
time the ME shows a negative bias for BV/2 as can be seen from 1 day ME in Table 4
for TARFIMA models. Since BV'/? excludes some spikes it produces a more smooth
forecast with smaller values of volatility compared to forecasts from RV'/2. Similar

20As we mentioned earlier the difference in results between RV1/2 and BV1/2 for the ARMA
model is negligible.
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negative bias for BV''/? can be seen for the ARFIMA model in Table 7 where most
ME are negative for bipower variation. Overall realized volatility generally produces
better forecasts than bipower variation judged by MSE and ME. Therefore we use
realized volatility for further forecast comparisons between models.

Table 10 shows the relative mean squared errors for 1-step and 5-step prediction.
Relative MSE is normalized relative to the linear ARMA model. Using the average
modes and medians of MSE listed in Table 10 we can compare the forecasting per-
formance of TARFIMA, ARFIMA and ARMA at 1 and 5 day forecasting horizons.
Table 11 summarizes the comparison for the three models and reports the number
of cases when a particular model is selected based on minimum average mode (or
median) of MSE as defined in section 2.4. For the 1-day forecasts using modes of
MSE we see that the TARFIMA model outperforms the benchmark ARMA model
in all cases and outperforms the ARFIMA model in 28 cases. Only in 2 cases does
the long memory ARFIMA model have a lower average mode of mean squared errors.
Using medians of MSE, the TARFIMA model outperforms ARFIMA in 19 cases and
ARMA in 29 cases. The ARFIMA model outperforms TARFIMA in 10 cases. For
the 5-day forecasts using either modes or medians of MSE we see that the TARFIMA
model outperforms ARFIMA in 21 cases and ARMA in all cases. The ARMA(1,1)
model (M3) is always dominated by either ARFIMA or TARFIMA models except 1
case for 1 day average median MSE. Since the distribution of MSE is highly skewed
to the right (MSE takes only positive values) it it better to use modes of distribu-
tions rather than means or medians which are biased to the right from the peak of
the distribution. However, we provide medians for robustness and still see that the
TARFIMA model dominates other models in most cases. The lower part of Table 11
shows models selected for three sample companies: TARFIMA is selected for GE and
MSFT and ARFIMA is selected for HPQ.

Better out-of-sample forecasts do not always imply better in-sample fit to which we
turn next. The MBIC criterion in most cases favors the simplest ARMA(1,1) model
which has the smallest number of parameters. However, by increasing the number of
lags which happen to be significant due to the presence of long memory, MBIC is not
favoring linear ARMA(p, ¢) models with a large number of lags. For the ARFIMA
model, which can be represented as an infinite order ARMA model, MBIC is always
higher than for the simple ARMA(1,1) model. However, for the TARFIMA model,
MBIC is improved in 6 cases compared to the simple ARMA(1,1) and in most cases
compared to the ARFIMA model even though the TARFIMA model has more than
twice parameters compared to ARFIMA. Thus the TARFIMA model shows better
in-sample fit than the ARFIMA model even with high penalty for extra parameters.
We would not select the simple ARMA(1,1) model, since it is misspecified in terms
of number of lags and inferior out-of-sample performance.
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The TARFIMA model forecasts are generally superior to linear models because
of information about the threshold and regime conditioned on which the forecast is
made. As discussed in section 3 the difference in dynamics reflects the difference in
investors’ behavior in high and low volatility regimes.

Tables 10 and 11 are summary statistics of forecast performances. They do not
give the whole pictures of the forecasts. Accordingly, we present the graphs of the
forecasts as compared to actual volatilities for three selected cases: GE, MSFT, and
HPQ.

Figure 2 shows out-of-sample posterior means of 1 and 5 day forecasts for RV1/?
of GE, MSFT and HPQ. The in-sample data was presented in Figure 1. We can
notice that 1 day ARFIMA forecasts of volatility for GE lie above TARFIMA and
ARMA forecasts. ARFIMA forecasts have a positive bias relative to the actual data
on the graph. We can also notice a negative bias for the ARMA model for 1 day HPQ
forecasts and a positive bias for the ARMA model for 5 day GE and 5 day MSFT
forecasts. For other graphs the forecasts look very similar for the three models.

Figure 3 shows posterior probability densities (PDFs) for standardized logarithms
of realized volatility forecasts for three selected stocks (GE, MSFT and HPQ).The
distributions are close to normal with slight asymmetries. The forecast residuals
can be approximated as normally distributed. Modelling the error term as normally
distributed is a fairly standard assumption for the log(RV'/?) in the literature (see
Andersen et al. (2001a, 2001b, 2003) and Thomakos and Wang (2003) among others).
Although the Jarque Bera (JB) test rejects normality for the logarithm of realized
volatility data it was shown in Thomakos and Wang (2003) that the JB test is over-
sized when the series exhibits long memory or autocorrelation and results in more
bias than other tests of normality. Since we found long memory and autocorrelation
of realized volatility for all series the JB test is not appropriate. Other tests may or
may not reject normality and could also be sensitive to autocorrelation. For exam-
ple, we performed the Kolmogorov-Smirnov test and concluded that normality is not
rejected in 16 cases out of 30, compared to the JB test where normality is rejected
in each case. The residuals of TARFIMA and ARFIMA models (correcting for au-
tocorrelation) are closer to the normal distribution than original data. We note the
advantage of using the TARFIMA model which provides unconditional distribution
of the error term as a mixture of normal distributions with two different variances
corresponding to upper and lower regimes. Thus theoretically it should give a better
approximation to the true distribution of the data.

In Figure 4 we show posterior cumulative densities (CDF's) of the medians of MSE
for the ARFIMA and TARFIMA models.?! The CDFs are calculated on the same set

21Using modes of MSE instead of medians provides similar results.
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of horizontal points for MSE using the first degree Taylor approximation.?? From the
visual comparison of CDF's we see that the distribution of medians of MSE is closer
to zero for the TARFIMA model for the 5 day forecasts of GE and for the ARFIMA
model for the 5 day forecasts of HPQ. In other cases TARFIMA and ARFIMA CDFs
look very close. Figure 5 shows the PDFs of the differences between the CDFs in
Figure 4 for ARFIMA and TARFIMA models. The pdfs of the difference provide
a statistical test of the difference in the distributions in Figure 4. Positive values
indicate that the ARFIMA model outperforms TARFIMA in MSE, while negative
difference shows the superiority of the TARFIMA model. If = is the distance be-
tween CDF of ARFIMA and TARFIMA, then we can define the probability of the
TARFIMA model being selected over ARFIMA as given by P(x<0). The results for
three companies are as follows. The probability that the TARFIMA model is superior
is 0.53 and 0.99 for GE for 1 and 5 day forecasts respectively. Thus, TARFIMA is
a preferred model for GE especially for a longer-term forecast where the distribution
of MSE of TARFIMA dominates that of ARFIMA with 99% probability. For MSFT
the probability of selecting TARFIMA is 0.51 and 0.52 for 1 and 5 day forecasts.
We select TARFIMA models but probabilities of ARFIMA and TARFIMA models
are close to 0.5 thus giving similar MSE distributions. For HP(Q the probabilities of
TARFIMA are 0.17 and 0.01, thus we select the ARFIMA model with high probabil-
ity in each case. These results confirm the results in Table 11 where TARFIMA was
selected for GE and MSFT and ARFIMA for HPQ based on average of MSE medians

or modes.

We note that the ARFIMA model works better than TARFIMA for smaller sam-
ples of observations (as the case of HPQ with 671 observations and only 311 in-sample
observations used for estimation). Considering that the TARFIMA model has 2
regimes the estimates of parameters are less precise for each regime where the sample
is small (for HPQ the upper regime has less than 20% or 60 observations) compared to
cases when the data has more observations.?> The TARFIMA model has more than
twice the number of parameters than the ARFIMA model, thus it is better to use
large samples for the TARFIMA model. On the other hand the TARFIMA model
captures the differences in persistence, long memory and volatility in two regimes,
thus it can add information for better forecasts in large samples, especially for multi-

22We thank Evgeny Goldman for suggesting the following way to provide a common grid for
two CDF graphs. Let a; and b; denote samples of x’s for two CDF graphs. The grid of common
x’s is given by x; = Awxi, i = 1,..nt, where number of points in the grid nt = min((amaes —
rmin) /A, (bmaz — bmin)/A)). The first degree Taylor approximation for two CDEF’s is given by
Fo(:) = Fa;) + (z; — a;) 2@=Llim1) and Fy(z;) = F(bi) + (2; — by) 8= C=1) correspondingly.

a;—a;_1 bi=bi1
23Number of observations in each regime determines the precision of estimated parameters. We

restrict number of observations in each regime to be at least 10% of the whole sample.
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day forecasts compared to 1 day forecasts if sample size is sufficiently large to allow
better precision in estimation of parameters.

The method of model selection using the posterior distribution of the differences
between CDF's of MSE is new in this paper. It is better than methods based on point
MSE estimate comparison since the latter does not account for uncertainty of MSE
estimation. The posterior predictive densities of forecasts and posterior distributions
of MSE provide information about uncertainty and tails of forecasts and provide
straightforward tests of model selection based on the dominance of the distribution
of MSE rather than point estimates of MSE. This is an advantage of the Bayesian
MCMC approach used in this paper since posterior distributions of parameters and
functions of interest are easily obtainable from MCMC chain.?*

The model choice based on MSE distributions was used in this paper based on the
popularity of MSE for forecasts comparisons. The CDF comparison test explained
above can be applied in a straightforward manner to alternative measures of forecast
accuracy, such as mean error or mean absolute error. Moreover we can compare more
than two models based on their CDF distributions and rank them using probabili-
ties of selecting each model as above for TARFIMA and ARFIMA. In our case the
ARMA(1,1) model was always inferior to other models so we did not present its CDF.

In the classical approach it has become common to use the Diebold and Mariano
(1995) test of superior predictive ability with many simulated forecasts for obtaining
the distribution of MSE. In our future research we would like to compare the Bayesian
approach of model selection with the Diebold and Mariano (1995) test.

5 Conclusion

In this paper, we used a threshold fractionally integrated autoregressive and mov-
ing average (TARFIMA) model to analyze the dynamics and forecasts of realized
variance and bipower variation. We find that the logarithmic transform of volatility
processes of 30 stocks in the Dow Jones Index can be characterized by regimes of high
and low volatility. The persistence, long memory and variance of volatilities change
with each regime.

Also, we find that models using realized variance perform better in forecasts than
models with bipower variation. Realized variance allows more information about the
spikes and incorporates that information in the dynamics of high volatility regime.

24The GAUSS codes are available from the authors.
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In addition, we also compared the forecast effectiveness of the TARFIMA model
with ARFIMA and ARMA models. We find that the TARFIMA model that accounts
for a different degree of long memory, persistence and variance in two regimes in most
cases performs better than the ARFIMA model and the ARMA model. A new test
based on the posterior distributions of mean squared forecast errors (MSE) is used
for model comparison.

Given that the ARFIMA model is known to produce forecasts that are better than
the forecasts by the ARMA and other models (ABDL 2003), our results show that
TARFIMA models may provide more benefit to investors in the areas of portfolio
optimization and risk.

Future research may be directed to studying how TARFIMA models can better
accommodate jumps, for example, using market news and individual company news
announcements. We could apply Lee and Mykland (2008) nonparametric tests for
jumps since they showed that their test outperforms tests based on BV. TARFIMA
models can be applied to other financial markets and used for identifying regimes of
high volatility. Also we can can compare our Bayesian approach of model selection
with Diebold and Mariano (1995) and other tests in the classical approach.

The final note is that for the periods of extreme volatility, such as during a financial
crisis, the TARFIMA model with regimes based on past volatility intuitively seems
to be more appropriate than linear models as TARFIMA explicitly accounts for the
dynamic properties of a high volatility regime. The use of the Markov-switching model
with long memory seems to be not as appropriate since its regimes are randomly
determined by an unobservable variable, while for the TARFIMA model regimes are
determined by the previous day level of volatility or some other observable variables.
As more intra-daily data covering the financial crisis becomes available it will be
interesting to compare the TARFIMA model with linear models.
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6 Appendix

Bayesian Estimation of ARMA, ARFIMA and TARFIMA

Models

Let the prior probability density function for the TARFIMA model be given by

s+1

(v, ¢,0,0%r,d) o H NG, 29) x N(o§, 29) x N0, 5) x 1G(Y, 65)

x 1 (rU) € [r}ozu,rg;]) x I (d9) € [-0.5,1]) (6)
where v, ¢,0, 0 and d are

o= (,-)/(1 (5+1))

1 1 s+1 s+1

6 = (Ve g e D gl

h = ((1) 1) 9§8+1) ’eéftll)))

o’ (o )) -,( (1))

d (dD, ... dtt)

We assume a uniform prior for threshold parameters - where each ) is constrained
so that minimum m% of observations are within each regime. We use m = 10% of
total number of observations as a minimum sample size in each regime.?®> We also
assume uniform prior distribution for d in the parameter space between [-0.5, 1].
Other parameters have proper normal-inverted gamma priors with large variances in
normal distributions.26

The posterior pdf is

s+1 ()
1 (1—B)" 'y —g(Z))
p(v, ¢, 0,02, 1,d|Y,X) o 7(v, 6, 0, 0% r,d) H1 tll ey ¢( 5 :
J=lted;

(7)

25m depends on the number of observations, if the sample size is small higher m is recommended.
For example, Koop and Potter (1999) used 15% as a minimum sample size in each regime.

26This priors are standard in the literature for ARMA models (see Chib and Greenberg (1994)
among others).
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where for every t € T; ={t: rj_1 < z_5 < r;}

u = (1— B)dmyt L
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MCMC algorithms for ARMA model were developed by Chib and Greenberg
(1994). The autoregressive AR and variance parameters are drawn using a Gibbs
sampler and moving average MA parameters are drawn using a Metropolis-Hastings
algorithm. Chib and Greenberg (1994) (as well as Nakatsuma (2000)) use the con-
strained nonlinear maximization algorithm in the MA block. Alternatively one can
use a Metropolis-Hastings algorithm with a random walk Markov Chain as was done
e.g. in Goldman and Tsurumi (2005). The random walk draws speed up the com-
putational time of the MCMC algorithms without losing much of the acceptance
rate of of the Metropolis-Hastings algorithm. A simple intuitive explanation of the
Metropolis-Hastings algorithm is given in Chib and Greenberg (1995).

In the literature for ARFIMA models there are several ways to handle the frac-
tional difference (1— B)%y;. Sowell (1992) used the exact maximum likelihood. Hauser
(1999) compares Sowell’s procedure with others and shows Sowell’s procedure tends
to dominate the others. Bayesian estimation of ARFIMA models was done by Koop
et. al. (1997), Gil-Alana (2001), and Gouskova (2002), among others. Shimizu and
Tsurumi (2009) compare several procedures from a Bayesian perspective. They show
that when the sample size is large the posterior pdf of d is insensitive to the choice
of nyags Where nyqy5 is the truncation point of the infinite series (2).

In this paper the ARFIMA and TARFIMA models are estimated using Metropolis-
Hastings MCMC algorithms with efficient jump. In order to estimate threshold pa-
rameters © = (r1,...,75) and fractional difference parameters d = (dy,...,ds41) we
employ an algorithm with the efficient Metropolis jumping rule that is decribed in
Gelman et al. (2004) and was used for a threshold ARMA model in Goldman and
Agbeyegbe (2008). The algorithm described below allows efficient simultaneous esti-
mation of multiple thresholds and fractional difference parameters.?”

2TCompared to existing methods of estimating multiple thresholds this method is more efficient,
since we avoid estimation on a grid of points. Simultaneous estimation of multiple thresholds and
difference parameters using many dimensions of grid search is virtually impossible. The Bayesian
analogue of a grid search is a Griddy Gibbs sampler withing MCMC which was done for a single
threshold parameter in Phann et al. (1996).
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We briefly describe the algorithm for the case of two and three regimes. We
estimate parameters in blocks: (i) regression parameters, v; (ii) AR coefficients ¢,
(iii) MA coefficients 6; (iv) variance o parameters; (v) threshold parameters r, (vi)
fractional difference parameters d.

We describe the procedure below.

(i)

(iii)

Choose initial values for v, ¢, 0, 0% r, d. Start from crude estimates of

mean or mode of the posterior distribution. Generally it is hard to find a
good approximation for mean or mode of threshold distribution because of an
unconventional shape of the likelihood function. For starting values we simply
divide the sample into regimes with equal samples. In case we have two regimes
we use the mean value of y; as a starting point (), if there are three regimes we
divide sample into three equal subsamples to find starting values r§0) and réO).
Using initial values for d in each regime the series y; is fractionally differenced
using the binomial expansion (2) with some limited number of lags n44s-

Let the started ?oints be denoted by v, ¢© O 520 0 4O Given
initial values r§° , réo) the samples {y;} and {z;} are separated into regimes
based on y;_s:

j=1 Y5 < T1
J=2 r1 < Y5 < T
Jj=3 Yi—s = T2

Once the data are separated into regimes given thresholds r the model is trans-
formed into an arranged ARFIMA model?®. After y; is differenced using frac-
tional parameters d in each regime and using equation (2) with fixed ny,gs the
model becomes an arranged ARMA model (with different parameters in each
regime), the estimation of which using MCMC is standard (see Chib and Green-
berg (1994) who used independence chains or Goldman and Tsurumi (2005) who
used random walk algorithm). We draw parameters of ARMA in each regime
block by block using random walk Markov Chain. We draw parameters of vari-
ance o2 using the standard inverted gamma distribution. The acceptance rates
of ARMA blocks are controlled by multiplying the variance of the proposal

density with a scaling constant.

Threshold parameters
We use the following procedure with efficient jump.

28We construct an arranged ARFIMA model in a similar way as Tsay (1989) and others con-
structed arranged autoregressive model sorting data y; by regimes.

26



(iv)

Let the superscript, (i), denote the i-th draw. FEach threshold parameter 7‘]@
(1 < j < s) can be drawn either in a separate block given other threshold
parameters, or all thresholds {r® = (", ... r)} could be drawn in one block,

in the latter case the acceptance rate is lower.

We generate . ' .
r(l) ~ N(r(-z_l), stdr(l_l))

where stdr ) is initially selected as a constant Cj, such that the proposal nor-
mal dlstrlbutlon covers all threshold parameter space (e.g, Co=quarter-distance
between upper and lower bound for each regime). After sufficient number of
(i—1)

draws mmm we set stalrjZ

accepted draws {rj(«l), [ = 1,... — 1} multiplied by a scaling constant C. The
variance of the proposal density is therefore proportional to the variance matrix
estimated from the simulation.

equal to the standard deviation of the sample of

stdr®) = Cx stdr({r®}),  1=mng,..i—1

Variance is adjusted using a scaling constant (', so that the acceptance rate is
reasonable. Gelman et al. (2004) suggest optimal acceptance rate of 44% for 1
parameter and 23% for many parameters.

If 7"]@ does not satisfy the condition

rlov < 7’]@

up
J < Tj

up

low and ;" are defined so that regimes below and above 7’ ) have at

j
least m % of observations, then generate 7’](»)

and lower bounds. We set m = 5%.

where 7

again until it falls within upper

We accept (¥ = (r@, s rgi)) with probability

a, = min — , 1
p(f}/(z) () 8(1)7 r(i=1) |data)

Otherwise set r(0) = r(i=1),

Alternatively, one can construct a separate block and acceptance rate for each
threshold.

Fractional difference parameters

We use the following procedure with efficient jump.

Each difference parameter dg-i) (1 <j < s+1) can be drawn either in a separate

block given other difference parameters, or all parameters {d") = (dgi), - dg’ll)}
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could be drawn in one block (in the latter case the acceptance rate is lower).

We generate " o) o)
i i—1 i—1
dj ~ N(dj ,stddj )

where stddg-i_l) is initially selected as a constant Cj, such that the proposal nor-
mal distribution covers all parameter space (e.g, Co=quarter-distance between
upper and lower bounds (-0.5,1)). After sufficient number of draws mmm we

set stddg-i_l) equal to the standard deviation of the sample of accepted draws

{dgl), [ = 1,..0 — 1} multiplied by a scaling constant C'. The variance of the
proposal density is therefore proportional to the variance matrix estimated from
the simulation.

stdd") = C x stdd({dV}), 1=mng,..i—1

Variance is adjusted using a scaling constant C, so that acceptance rate is
reasonable.

If dy) does not satisfy the condition
—0.5<d <1

then generate dgi) again until it falls within upper and lower bounds.

We accept d¥) = (dgi), . dgﬂ)r ) with probability

C p(y®, 0@, 00 1@ q0)|data) ,
g = 1ImMin - - - - -
d p(v®, 60 60 () di-D|data)’

Otherwise set d® = d—1.

Alternatively, one can construct a separate block and acceptance rate for each
parameter d.

After d is drawn the series y; is fractionally differenced using binomial expansion
(2) with some limited number of lags n;,4s. We change nj,4s and make sure that
the posterior pdf of d is insensitive to nags.%

After drawing threshold parameters r and filtering v, with current draws of d¥)
(where regime j is defined in (5)) the MCMC algorithm steps become identical
to the steps in the ARMA model.

29We found that Niags = 40 which corresponds to 40 days was sufficient. Since in this paper we
generally work with large samples sizes the problem of truncation does not arise.
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As with any MCMC procedure, we make N draws of the parameters in each of
the blocks, and we burn the first m draws. Out of the remaining N — m draws, we
keep every h-th draw. We check convergence by testing that the draws attain mean
and covariance stationarity.?°.

Choice of the Number of Regimes and Orders

Estimation of a TARFIMA model involves the choice of (i) number of regimes and
delay parameter and (ii) orders of ARMA(p, ¢) process in each regime. ARFIM A(p,d,q)
model choice involves orders p and gq.

For each model the orders p, ¢, the number of regimes s+1 and the delay parameter
0 are chosen using the significance of coefficients of lags, marginal likelihood, and a
modified Bayesian information criterion (MBIC) discussed in Goldman and Tsurumi
(2005). This criterion is a Bayesian analogue of Akaike information criterion given
by
AIC = =257 In(L;(p;, ¢, 5,9)) + 2(v + 1)

where In(L;()) is a log-likelihood function for regime j and v are degrees of freedom.

The modified Bayesian information criterion is given by:
MBIC = —2In m(z) + 2(v + 1)

where the marginal likelihood m(z) is computed by the Laplace-Metropolis estimation
and evaluated at either posterior mean or mode.>® The MBIC criterion is an in-
sample information criterion showing overall fit of the models penalizing for additional
parameters.

For the choice of number of regimes we find the smallest MBIC. In addition we
perform sensitivity analysis where estimation of thresholds r; is done with and with-
out restriction 7w () < ry <1 (@), where upper and lower bounds are determined
by using the minimum percentage of observation for each regime. We look at the sen-
sitivity of posterior densities of r; to imposing the minimum 10%, 5% of observations
and no restriction. Typically we find two regimes with at least 10% of observations
in each regime.3?

30For example, we use Kolmogorov Smirnov and the filtered fluctuation tests (these tests are
studied and compared in Goldman, Valieva and Tsurumi (2008))

31 Alternatively one can use Chib and Jeliazkov (2001) estimator of marginal likelihood.

32We estimated models with two and three regimes, but using both in-sample and out-of-sample
criteria all results were in favor of two regimes. Therefore, we present only results with two regimes
in the paper.
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To test whether the dynamics changes with regime one can simulate posterior dis-
tributions of differences in parameters of interest in upper and lower regimes. If there
is considerable difference in some parameter’s distributions it supports the hypothesis
of non-linearity of series ;.



Table 1: Summary statistics of log (\/ RV) for DJ 30 Companies

This table presents mean, standard deviation, first order autocorrelation, skewness, kurtosis
and fractional integration parameter d¢ for log square root of realized volatilities (RV). GPH
log-periodogram was used to estimate the fractional integration parameter d¢ based on m =
The asymptotic standard error for d° estimates is

lowest-frequency periodogram ordinates.

7(24m)~1/2,
Firm  Nobs Mean St.Dev. AR(1) Skewness Kurtosis d¢ (as.std.)
GE 3024  0.459 0.329 0.703 0.655 4.074 0.460 (0.027)
MSFT 3024 0.666 0.332 0.681 0.344 3.967 0.465 (0.027)
HPQ 671 0.958 0.359 0.673 0.341 3.014 0.378 (0.065)
MMM 3024 0.363 0.331 0.67 0.273 3.492 0.451 (0.027)
AA 3024  0.554 0.336 0.649 0.495 3.452 0.448 (0.027)
MO 3023  0.516 0.356 0.631 0.725 4.928 0.425 (0.027)
AXP 3024 0.726 0.325 0.687 0.136 3.608 0.497 (0.027)
AIG 3024  0.374 0.347 0.689 0.343 3.271 0.502 (0.027)
BA 3024 0.599 0.312 0.620 0.371 4.227 0.404 (0.027)
CAT 3024  0.535 0.317 0.624 0.466 3.447 0.373 (0.027)
C 3010 0.689 0.306 0.657 0.582 4.324 0.467 (0.027)
KO 3024 0.493 0.280 0.685 0.241 3.641 0.498 (0.027)
DD 3024 0.550 0.300 0.654 0.564 3.645 0.407 (0.027)
XOM 1278  0.403 0.347 0.714 0.416 3.350 0.553 (0.042)
GM 3024  0.512 0.294 0.558 0.352 4.214 0.404 (0.027)
HD 3024  0.679 0.304 0.656 0.633 4.558 0.440 (0.027)
HON 3024  0.686 0.340 0.634 0.347 3.926 0.392 (0.027)
INTC 3024 0.826 0.350 0.738 0.423 3.236 0.434 (0.027)
IBM 3024  0.502 0.332 0.660 0.467 3.449 0.463 (0.027)
JPM 3024  0.513 0.377 0.761 0.850 3.899 0.457 (0.027)
JNJ 3024  0.452 0.303 0.644 0.182 3.672 0.468 (0.027)
MCD 3024  0.607  0.285 0.623 0.422 3.727 0.397 (0.027)
MRK 3024 0.526 0.309 0.635 0.302 3.546 0.414 (0.027)
PFE 3024  0.535 0.296 0.608 0.626 3.932 0.420 (0.027)
PG 3024  0.437 0.313 0.703 0.413 4.905 0.475 (0.027)
SBC 3024  0.608 0.305 0.663 0.511 4.203 0.414 (0.027)
UTX 3024  0.461 0.341 0.659 0.452 3.734 0.416 (0.027)
VZ 1130 0.657  0.368 0.657 0.232 2.941 0.458 (0.045)
WMT 3024 0.804 0.355 0.753 -0.362 2.847 0.524 (0.027)
DIS 3024  0.661 0.318 0.705 0.411 3.873 0.463 (0.027)




Table 2: Summary statistics of log (\/ BV) for DJ 30 Companies

This table presents mean, standard deviation, first order autocorrelation, skewness, kurtosis
and fractional integration parameter d¢ for log square root of bipower variation (BV).

log-periodogram was used to estimate the fractional integration parameter d° based on m =

lowest-frequency periodogram ordinates.

The asymptotic standard error for d€ estimates is

7(24m)~1/2,
Firm  Nobs Mean St.Dev. AR(1) Skewness Kurtosis d¢ (as.std.)
GE 3024  0.379 0.361 0.696 0.518 3.784 0.432 (0.027)
MSFT 3024 0.612 0.343 0.660 0.316 3.816 0.445 (0.027)
HPQ 671 0.897 0.370 0.679 0.425 3.072 0.458 (0.065)
MMM 3024 0.257 0.364 0.650 0.130 3.567 0.427 (0.027)
AA 3024  0.427  0.387 0.630 0.195 3.079 0.412 (0.027)
MO 3023 0.421 0.373 0.600 0.539 4.006 0.413 (0.027)
AXP 3024 0.622 0.341 0.618 0.261 3.610 0.469 (0.027)
AIG 3024  0.282 0.382 0.669 0.278 3.102 0.476 (0.027)
BA 3024 0.498 0.344 0.590 0.214 3.873 0.394 (0.027)
CAT 3024  0.431 0.355 0.592 0.250 3.370 0.337 (0.027)
C 2650  0.589 0.334 0.609 0.470 3.955 0.447 (0.027)
KO 3024  0.395 0.297 0.626 0.340 3.595 0.474 (0.027)
DD 3024 0.459 0.331 0.641 0.413 3.266 0.377 (0.027)
XOM 1278  0.357 0.354 0.704 0.381 3.324 0.532 (0.042)
GM 3024 0.400 0.323 0.513 0.387 4.006 0.387 (0.027)
HD 3024  0.580 0.329 0.627 0.597 4.270 0.418 (0.027)
HON 3024  0.555 0.374 0.587 0.259 3.408 0.362 (0.027)
INTC 3024 0.773 0.364 0.716 0.392 3.182 0.411 (0.027)
IBM 3024 0.428 0.357 0.639 0.310 3.361 0.424 (0.027)
JPM 3024 0.414 0.423 0.756 0.601 3.379 0.443 (0.027)
JNJ 3024  0.356 0.312 0.569 0.272 3.745 0.429 (0.027)
MCD 3024  0.500 0.314 0.552 0.364 3.643 0.394 (0.027)
MRK 3024 0.430 0.312 0.555 0.309 3.621 0.381 (0.027)
PFE 3024 0.448 0.322 0.583 0.475 3.755 0.395 (0.027)
PG 3024  0.354 0.328 0.655 0.45 4.287 0.461 (0.027)
SBC 3024 0.495 0.340 0.620 0.412 3.881 0.361 (0.027)
UTX 3024  0.344 0.395 0.644 0.109 3.708 0.389 (0.027)
VZ 1130  0.586 0.373 0.664 0.190 2.854 0.463 (0.045)
WMT 3024 0.694 0.352 0.656 -0.239 3.066 0.462 (0.027)
DIS 3024  0.560 0.348 0.670 0.319 3.580 0.416 (0.027)




Table 3: TARFIMA: Posterior means and standard deviations

Threshold r % regime 1 max AR 1 max AR 2 d® d®
RV BV RV BV RV BV RV BV RV BV RV BV
GE 0.815 0.575 0.863 0.736  0.466 0.388 0.303 0.154 0.529 0.485 0.556 0.586
(0.033) (0.027) (0.081) (0.095) (0.246) (0.112) (0.037) (0.039) (0.096) (0.074)
MSFT  1.107 0.996 0.910 0.873  0.699 0.133 0.340 0.785 0.463 0.433 0.304 0.356
(0.007)  (0.005) (0.271)  (0.096) (0.242) (0.154) (0.046) (0.028) (0.097) (0.058)
HPQ 0.807 0.839  0.354 0.450 0.324 0.326 0.214 0.281 0.513 0.422 0.629 0.648
(0.176)  (0.116) (0.210) (0.222) (0.163) (0.189) (0.223) (0.124) (0.130) (0.154)
MMM  0.690 0.483 0.851 0.756  0.369 0.294 0.103 0.224 0.533 0.467 0.518 0.554
(0.058) (0.068) (0.097) (0.087) (0.075) (0.130) (0.054) (0.043) (0.122) (0.084)
AA 0.933 0.600 0.866 0.688  0.264 0.266 0.176 0.102 0.431 0.420 0.559 0.655
(0.062) (0.147) (0.097) (0.117) (0.141) (0.065) (0.055) (0.062) (0.070) (0.119)
MO 0.784 0.581 0.795 0.686  0.254 0.410 0.167 0.151 0.440 0.401 0.411 0.432
(0.031) (0.030) (0.157) (0.190) (0.122) (0.111) (0.039) (0.046) (0.062) (0.047)
AXP 1.083 0.865 0.883 0.792  0.982 0.429 0.187 0.140 0.320 0.498 0.573 0.565
(0.007)  (0.025) (0.018) (0.078) (0.091) (0.099) (0.025) (0.056) (0.092) (0.078)
AlIG 0.463 0.623 0.635 0.809 0.219 0.265 0.197 0.164 0.461 0.515 0.635 0.619
(0.091) (0.169) (0.107)  (0.079) (0.141) (0.108) (0.047) (0.055) (0.103) (0.091)
BA 0.965 0.897 0.894 0.891 0.519 0.338 0.512 0.353 0.361 0.427 0.476 0.516
(0.006) (0.013) (0.267) (0.152) (0.244) (0.221) (0.021) (0.038) (0.073) (0.092)
CAT 0.751 0.107  0.773 0.170  0.449 0.155 0.123 0.371 0.484 0.240 0.480 0.630
(0.094) (0.197) (0.087) (0.113) (0.083) (0.074) (0.056) (0.082) (0.062) (0.101)
C 0.898 0.949 0.786 0.869  0.243 0.248 0.267 0.331 0.463 0.451 0.417 0.576
(0.010)  (0.040) (0.152)  (0.102) (0.201) (0.240) (0.049) (0.038) (0.093) (0.097)
KO 0.790 0.733  0.876 0.886  0.291 0.379 0.273 0.246 0.517 0.502 0.576 0.567
(0.011) (0.028) (0.110) (0.082) (0.228) (0.192) (0.043) (0.045) (0.100) (0.098)
DD 0.830 0.749 0.834 0.821 0.435 0.448 0.126 0.078 0.483 0.508 0.547 0.564
(0.038) (0.012) (0.115)  (0.062) (0.108) (0.062) (0.047) (0.038) (0.092) (0.083)
XOM 0.838 0.715 0.884 0.845 0.158 0.163 0.452 0.308 0.593 0.625 0.815 0.678
(0.042)  (0.095) (0.087) (0.105) (0.208) (0.187) (0.070) (0.093) (0.161) (0.171)
GM 0.811 0.680 0.874 0.833  0.252 0.245 0.152 0.208 0.421 0.371 0.595 0.595
(0.005) (0.012) (0.106) (0.113) (0.115) (0.109) (0.039) (0.036) (0.115) (0.110)
HD 0.915 0.812 0.823 0.790  0.350 0.425 0.180 0.115 0.461 0.427 0.604 0.547
(0.017)  (0.034) (0.122) (0.128) (0.140) (0.082) (0.060) (0.052) (0.107) (0.087)
HON 1.079 0.926  0.893 0.854  0.452 0.443 0.209 0.125 0.560 0.527 0.638 0.608
(0.020) (0.038) (0.057) (0.071) (0.247) (0.098) (0.054) (0.049) (0.119) (0.097)
INTC 1.071 1.058 0.770 0.789  0.337 0.301 0.324 0.267 0.437 0.468 0.563 0.512
(0.012) (0.051) (0.158) (0.159) (0.157) (0.188) (0.037) (0.051) (0.098) (0.102)
IBM 0.817 0.752  0.835 0.825 0.244 0.205 0.223 0.420 0.407 0.387 0.302 0.343
(0.027) (0.014) (0.151) (0.166) (0.155) (0.192) (0.032) (0.028) (0.065) (0.068)
JPM 0.995 0.958 0.878 0.883 0.394 0.407 0.384 0.316 0.500 0.537 0.549 0.642
(0.036) (0.010) (0.095) (0.074) (0.251) (0.170) (0.037) (0.034) (0.107) (0.103)
JNJ 0.785 0.690 0.884 0.876  0.320 0.279 0.212 0.228 0.491 0.444 0.484 0.524
(0.015)  (0.037) (0.112) (0.104) (0.146) (0.211) (0.045) (0.036) (0.076) (0.099)
MCD 0.665 0.702  0.606 0.743  0.495 0.262 0.527 0.359 0.418 0.412 0.384 0.426
(0.005) (0.146) (0.156) (0.132) (0.209) (0.180) (0.049) (0.049) (0.043) (0.108)
MRK 0.718 0.753  0.736  0.853  0.468 0.437 0.334 0.254 0.437 0.473 0.468 0.567
(0.056)  (0.045) (0.184) (0.116) (0.164) (0.180) (0.070) (0.063) (0.066) (0.102)
PFE 0.772 0.790 0.812 0.867 0.413 0.422 0.189 0.181 0.453 0.475 0.331 0.342
(0.004) (0.024) (0.158) (0.087) (0.114) (0.171) (0.048) (0.042) (0.072) (0.062)
PG 0.798 0.729  0.896 0.886  0.457 0.373 0.290 0.263 0.580 0.507 0.553 0.525
(0.007) (0.017) (0.081) (0.104) (0.219) (0.152) (0.050) (0.040) (0.086) (0.085)
SBC 0.968 0.853 0.889 0.866  0.415 0.365 0.105 0.096 0.534 0.475 0.476 0.456
(0.015)  (0.030) (0.079) (0.071) (0.085) (0.073) (0.064) (0.039) (0.089) (0.080)
UTX 0.866 0.759  0.875 0.854  0.367 0.391 0.205 0.162 0.489 0.484 0.558 0.614
(0.037)  (0.058) (0.078) (0.065) (0.143) (0.139) (0.039) (0.042) (0.088) (0.122)
\%/ 0.977 0.936  0.814 0.837  0.280 0.287 0.398 0.382 0.643 0.625 0.654 0.678
(0.092) (0.081) (0.107) (0.115) (0.205) (0.236) (0.103) (0.120) (0.158) (0.136)
WMT  0.837 0.571  0.467 0.335 0.180 0.119 0.263 0.142 0.536 0.518 0.389 0.466
(0.030) (0.079) (0.099) (0.076) (0.219) (0.090) (0.064) (0.064) (0.054) (0.081)
DIS 0.929 0.939 0.824 0.873  0.423 0.375 0.126 0.110 0.584 0.555 0.533 0.551
(0.078)  (0.031) (0.113) (0.064) (0.125) (0.090) (0.057) (0.040) (0.080) (0.103)



Table 4: TARFIMA: Posterior 1 day forecast MSE and ME

1 day MSE 1 day ME
ave mode ave median ave mode ave median
RV BV RV BV RV BV RV BV
GE 0.035 0.031 0.060 0.059 0.001 -0.056 0.035 -0.017
MSFT 0.049 0.049 0.084 0.083 0.014 -0.045 0.057 0.001
HPQ 0.160 0.183 0.218 0.195 0.048 -0.274 0.120 0.016
MMM 0.047 0.053 0.075 0.080 -0.021 -0.088 0.016 -0.041
AA 0.132 0.147 0.193 0.218 -0.088 -0.191 -0.021 -0.111
MO 0.151 0.156 0.192 0.193 -0.025 -0.082 0.026 -0.022
AXP 0.055 0.0564 0.080 0.077 0.012 -0.016 0.047 0.025
AIG 0.155 0.167 0.193 0.203 -0.049 -0.127 0.000 -0.071
BA 0.059 0.061 0.105 0.106 0.016 -0.087 0.068 -0.023
CAT 0.070 0.076 0.108 0.118 -0.019 -0.101 0.029 -0.034
C 0.038 0.038 0.066 0.066 0.037 -0.028 0.071 0.014
KO 0.046 0.046 0.068 0.071 0.006 -0.051 0.035 -0.017
DD 0.040 0.040 0.069 0.069 0.022 -0.050 0.056 -0.007
XOM  0.038 0.039 0.057 0.059 -0.019 -0.080 0.013 -0.047
GM 0.059 0.060 0.097 0.100 0.005 -0.070 0.050 -0.015
HD 0.058 0.059 0.094 0.096 0.019 -0.059 0.060 -0.012
HON 0.153 0.167 0.204 0.219 -0.039 -0.134 0.027 -0.057
INTC 0.069 0.074 0.130 0.131 0.003 -0.098 0.058 -0.036
IBM 0.036 0.036 0.061 0.060 0.028 -0.019 0.066 0.027
JPM 0.070 0.075 0.103 0.109 -0.008 -0.094 0.031 -0.048
JNJ 0.058 0.059 0.083 0.084 0.006 -0.043 0.040 -0.004
MCD 0.101 0.105 0.143 0.148 0.014 -0.080 0.054 -0.025
MRK  0.100 0.107 0.142 0.145 -0.010 -0.090 0.037 -0.040
PFE 0.229 0.238 0.264 0.270 -0.023 -0.107 0.020 -0.058
PG 0.023 0.024 0.042 0.044 -0.002 -0.047 0.024 -0.014
SBC 0.053 0.055 0.091 0.095 0.006 -0.066 0.046 -0.017
UTX 0.043 0.045 0.077 0.083 -0.013 -0.089 0.032 -0.030
VZ 0.059 0.062 0.102 0.102 -0.031 -0.095 0.028 -0.039
WMT 0.029 0.029 0.057 0.057 0.006 -0.067 0.048 -0.024
DIS 0.105 0.111 0.143 0.149 -0.011 -0.093 0.029 -0.042




Table 5: TARFIMA: Posterior 5 day forecast MSE, ME and in sample MBIC

5 day MSE 5 day ME MBIC
ave mode ave median ave mode ave median at mean
RV BV RV BV RV BV RV BV RV BV

GE 0.075 0.075 0.095 0.092 0.064 0.005 0.080 0.024 -5457.899 -4931.195
MSFT 0.117 0.115 0.157 0.149 0.102 0.052 0.131 0.080 -5098.108 -4762.122
HPQ 0.303 0.285 0.411 0.315 0.263 -0.067 0.284 0.132 -438.873 n/a

MMM 0.093 0.100 0.115 0.118 0.034 -0.032 0.052 -0.008 -5156.464 -4559.120
AA 0.233 0.268 0.275 0.312 -0.015 -0.124 0.012 -0.075 -5070.004 -4294.414
MO 0.238 0.243 0.275 0.274 0.059 0.001 0.088 0.036 -4534.781 -4061.911
AXP 0.095 0.097 0.121 0.123 0.081 0.070 0.103 0.091 -5293.978 -4638.774
AIG 0.245 0.260 0.272 0.284 -0.003 -0.075 0.028 -0.044 -5058.408 -4484.265
BA 0.136 0.138 0.184 0.176 0.110 0.002 0.143 0.036 -5041.389 -4410.704
CAT 0.137 0.151 0.170 0.185 0.051 -0.018 0.073 0.015 -5086.066 -4357.029
C 0.088 0.088 0.119 0.116 0.120 0.055 0.138 0.078 -5419.037 -4708.990
KO 0.083 0.087 0.103 0.104 0.059 0.007 0.077 0.023 -6023.571 -5351.793
DD 0.084 0.084 0.111 0.105 0.090 0.020 0.108 0.037 -5574.055 -5032.803
XOM 0.071 0.073 0.089 0.087 0.026 -0.035 0.045 -0.017 -1757.287 -1692.234
GM 0.123 0.129 0.157 0.157 0.082 0.013 0.104 0.036 -5134.646 -4455.786
HD 0.119 0.121 0.157 0.152 0.101 0.023 0.125 0.049 -5518.176 -4920.435
HON 0.245 0.268 0.293 0.305 0.050 -0.044 0.083 -0.008 -4756.158 -4053.159
INTC 0.167 0.167 0.224 0.213 0.096 -0.004 0.131 0.031 -5306.304 -4954.672
IBM 0.079 0.079 0.107 0.105 0.107 0.064 0.130 0.090 -4951.845 -4459.860
JPM 0.125 0.132 0.153 0.155 0.058 -0.028 0.078 -0.007 -5284.036 -4692.975
JNJ 0.101 0.101 0.123 0.121 0.072  0.028 0.089 0.047 -5423.723 -4875.457
MCD 0.165 0.175 0.198 0.205 0.084 -0.004 0.105 0.025 -5603.548 -4751.838
MRK 0.176 0.178 0.212 0.205 0.067 -0.013 0.093 0.010 -5253.098 -4795.385
PFE 0.299 0.306 0.329 0.332 0.043 -0.037 0.065 -0.014 -5316.509 -4777.577
PG 0.054 0.057 0.073 0.073 0.043 0.009 0.061 0.027 -5678.184 -5108.187
SBC 0.113 0.119 0.145 0.149 0.079 0.013 0.100 0.036 -5603.506 -4853.812
UTX 0.097 0.109 0.125 0.135 0.054 -0.015 0.076 0.011 -4970.769 -4154.652
V7 0.128 0.128 0.168 0.158 0.048 -0.019 0.079 0.009 -1260.425 -1245.345
WMT 0.075 0.074 0.104 0.094 0.077 -0.003 0.099 0.020 -5604.597 -4854.315
DIS 0.162 0.167 0.194 0.196 0.057 -0.017 0.075 0.004 -5696.724 -5010.914




Table 6: ARFIMA: Posterior means and standard deviations

max AR root fractional parameter d
RV BV RV BV
GE 0.972 0.312 0.361 0.569
(0.015)  (0.108) (0.024) (0.064)
MSFT  0.389 0.462 0.520 0.497
(0.090) (0.199) (0.045) (0.074)
HPQ 0.568 0.963 0.342 0.124
(0.369) (0.038) (0.251) (0.137)
MMM  0.353 0.363 0.630 0.626
(0.055) (0.053) (0.071) (0.066)
AA 0.975 0.253 0.199 0.641
(0.008) (0.044) (0.046) (0.059)
MO 0.989 0.263 0.312 0.490
(0.007) (0.126) (0.021) (0.047)
AXP 0.965 0.966 0.348 0.293
(0.017)  (0.013) (0.033) (0.032)
AIG 0.238 0.235 0.586 0.616
(0.085) (0.053) (0.048) (0.060)
BA 0.968 0.411 0.331 0.535
(0.026) (0.085) (0.035) (0.062)
CAT 0.986 0.370 0.273 0.691
(0.007)  (0.044) (0.027) (0.060)
C 0.939 0.957 0.335 0.281
(0.022) (0.017) (0.038) (0.031)
KO 0.956 0.343 0.328 0.573
(0.017)  (0.067) (0.039) (0.052)
DD 0.988 0.363 0.308 0.653
(0.008) (0.048) (0.025) (0.056)
XOM 0.965 0.118 0.132 0.640
(0.016) (0.084) (0.111) (0.080)
GM 0.957 0.319 0.238 0.530
(0.013) (0.071) (0.038) (0.053)
HD 0.950 0.959 0.331 0.303
(0.021) (0.014) (0.032) (0.032)
HON 0.982 0.994 0.298 0.279
(0.015)  (0.007) (0.042) (0.024)
INTC 0.995 0.994 0.399 0.368
(0.004) (0.005) (0.019) (0.020)
IBM 0.334 0.445 0.470 0.516
(0.242) (0.115) (0.053) (0.050)
JPM 0.347 0.321 0.649 0.688
(0.059) (0.053) (0.055) (0.062)
JNJ 0.288 0.248 0.558 0.517
(0.092) (0.085) (0.052) (0.045)
MCD 0.976 0.981 0.300 0.244
(0.013) (0.009) (0.031) (0.029)
MRK 0.981 0.385 0.305 0.567
(0.009) (0.059) (0.027) (0.063)
PFE 0.966 0.976 0.313 0.283
(0.016) (0.013) (0.029) (0.032)
PG 0.390 0.332 0.619 0.598
(0.065) (0.061) (0.067) (0.059)
SBC 0.981 0.325 0.287 0.689
(0.008) (0.041) (0.028) (0.060)
UTX 0.280 0.333 0.583 0.630
(0.074) (0.053) (0.048) (0.060)
V7Z 0.973 0.237 0.109 0.692
(0.012)  (0.085) (0.076) (0.098)
WMT  0.985 0.974 0.280 0.173
(0.007) (0.008) (0.040) (0.051)
DIS 0.989 0.992 0.311 0.269

(0.005)  (0.005) (0.026) (0.028)



Table 7: ARFIMA: Posterior forecast MSE and ME

1 day MSE 1 day ME
ave mode ave median ave mode ave median
RV BV RV BV RV BV
GE 0.035 0.037 0.061 0.062 0.005 -0.059 0.033 -0.024
MSFET 0.048 0.052 0.085 0.084 -0.0002 -0.055 0.049 -0.015
HPQ 0.148 0.146 0.207 0.201 -0.007 -0.092 0.059 -0.028
MMM 0.052 0.058 0.076 0.081 -0.028 -0.092 0.006 -0.052
AA 0.135 0.148 0.193 0.210 -0.064 -0.168 -0.012 -0.099
MO 0.162 0.164 0.195 0.196 -0.050 -0.093 -0.003 -0.039
AXP 0.056 0.056 0.080 0.077 0.027 -0.024 0.057 0.013
AIG 0.166 0.178 0.201 0.216 -0.051 -0.124 -0.010 -0.075
BA 0.064 0.067 0.102 0.108 -0.012 -0.093 0.037 -0.038
CAT 0.075 0.083 0.109 0.118 -0.035 -0.104 0.006 -0.052
C 0.041 0.042 0.066 0.067 0.033 -0.039 0.065 0.000
KO 0.047 0.048 0.068 0.070 0.014 -0.058 0.038 -0.030
DD 0.042 0.044 0.067 0.070 -0.008 -0.064 0.021 -0.028
XOM  0.040 0.040 0.059 0.059 -0.003 -0.078 0.024 -0.049
GM 0.065 0.070 0.098 0.103 -0.001 -0.091 0.039 -0.040
HD 0.064 0.067 0.096 0.099 0.012 -0.074 0.049 -0.028
HON 0.161 0.173 0.204 0.220 -0.035 -0.140 0.018 -0.070
INTC 0.076 0.083 0.129 0.136 -0.036 -0.126 0.015 -0.072
IBM 0.039 0.039 0.061 0.061 0.017 -0.037 0.0563 0.003
JPM 0.073 0.080 0.102 0.109 -0.023 -0.103 0.013 -0.061
JNJ 0.060 0.061 0.083 0.084 -0.003 -0.0564 0.026 -0.021
MCD  0.109 0.111 0.145 0.150 -0.010 -0.095 0.027 -0.050
MRK  0.103 0.112 0.141 0.146 -0.028 -0.101 0.009 -0.060
PFE 0.229 0.240 0.264 0.270 -0.028 -0.112 0.011 -0.068
PG 0.025 0.027 0.042 0.045 -0.008 -0.057 0.017 -0.028
SBC 0.057 0.062 0.091 0.097 -0.005 -0.088 0.029 -0.044
UTX 0.046 0.050 0.077 0.084 -0.019 -0.090 0.020 -0.038
V7 0.066 0.067 0.103 0.103 -0.018 -0.097 0.031 -0.050
WMT 0.031 0.032 0.055 0.057 0.003 -0.046 0.033 -0.009
DIS 0.104 0.114 0.140 0.150 -0.024 -0.107 0.010 -0.063




Table 8: ARFIMA: Posterior 5 day forecast MSE, ME and in sample MBIC

5 day MSE 5 day ME MBIC
ave mode ave median ave mode ave median at mean
RV BV RV BV RV BV RV BV RV BV
GE 0.076 0.079 0.100 0.100 0.053 0.001 0.079 0.023 -5382.513 -4900.785
MSFT 0.118 0.116 0.157 0.148 0.093 0.024 0.119 0.054 -5086.452 -4772.736
HPQ 0.264 0.253 0.336 0.310 0.108 0.012 0.152 0.056  -240.275  -451.207
MMM 0.095 0.101 0.117 0.121 0.024 -0.037 0.041 -0.017 -5169.279 -4571.991
AA 0.238 0.265 0.284 0.310 0.001 -0.085 0.028 -0.055 -5088.268 -4287.819
MO 0.241 0.243 0.273 0.276 0.020 -0.006 0.043 0.022 -4523.473 -4082.801
AXP 0.100 0.098 0.128 0.123 0.105 0.057 0.123 0.080 -5300.006 -4646.576
AIG 0.252 0.267 0.280 0.293 0.004 -0.063 0.026 -0.038 -5071.024 -4494.319
BA 0.134 0.141 0.174 0.178 0.065 -0.011 0.094 0.018 -5041.429 -4425.546
CAT 0.140 0.152 0.170 0.183 0.022 -0.035 0.043 -0.012 -5108.996 -4406.671
C 0.092 0.091 0.126 0.119 0.120 0.044 0.139 0.068 -5381.378 -4680.505
KO 0.085 0.086 0.106 0.103 0.073 -0.004 0.087 0.011 -6060.680 -5398.072
DD 0.081 0.086 0.104 0.107 0.044 -0.004 0.059 0.012 -5564.820 -5034.491
XOM 0.076 0.075 0.097 0.089 0.049 -0.032 0.068 -0.017 -1770.894 -1718.093
GM 0.126 0.132 0.161 0.161 0.074 -0.014 0.093 0.008 -5118.971 -4446.628
HD 0.124 0.127 0.163 0.160 0.090 0.004 0.114 0.032 -5474.880 -4888.519
HON 0.249 0.271 0.294 0.311 0.039 -0.050 0.072 -0.017 -4762.183 -4056.860
INTC 0.167 0.174 0.216 0.215 0.027 -0.0563 0.062 -0.023 -5318.941 -4970.278
IBM 0.081 0.079 0.109 0.103 0.096 0.038 0.121 0.063 -4937.264 -4457.169
JPM 0.125 0.133 0.155 0.159 0.037 -0.041 0.057 -0.019 -5241.085 -4672.612
JNJ 0.101 0.104 0.121 0.121 0.058 0.012 0.072 0.028 -5442.732 -4890.312
MCD  0.167 0.175 0.199 0.205 0.056 -0.025 0.076 -0.002 -5600.779 -4789.930
MRK  0.172 0.178 0.204 0.204 0.035 -0.031 0.056 -0.012 -5266.431 -4807.444
PFE 0.303 0.311 0.336 0.337 0.038 -0.050 0.061 -0.023 -5287.426 -4774.597
PG 0.057 0.059 0.075 0.074 0.040 -0.006 0.0564 0.009 -5618.292 -5097.404
SBC 0.114 0.122 0.145 0.150 0.058 -0.017 0.076 0.000 -5580.262 -4872.616
UTX 0.099 0.110 0.127 0.137 0.044 -0.019 0.064 0.005 -4964.188 -4156.829
V7 0.134 0.129 0.171 0.157 0.058 -0.030 0.084 -0.006 -1289.221 -1270.668
WMT 0.071 0.076 0.094 0.100 0.061 0.025 0.077 0.046 -5599.403 -4884.271
DIS 0.160 0.169 0.192 0.199 0.035 -0.039 0.054 -0.019 -5667.714 -4998.018




Table 9: ARMA(1,1):

Posterior means, standard deviation and forecasts for RV

Firm Nobs max AR 1 day MSE 1 day ME 5 day MSE 5 day ME MBIC
root mode median mode median mode median mode median at mean
GE 3024 0.954 0.037  0.062 0.019 0.047  0.082 0.108 0.075 0.104  -5432.68
(0.008)
MSFT 3024 0.937 0.053  0.090 0.052 0.087  0.133 0.183 0.144 0.182  -5136.42
(0.010)
HPQ 671 0.953 0.161 0.212 0.012 0.081 0.285 0.359 0.135 0.189 -526.10
(0.028)
MMM 3024 0.965 0.0563  0.076  -0.007 0.022 0.097 0.121 0.036 0.061  -5196.56
(0.007)
AA 3024 0.974 0.135 0.193 -0.054 -0.007 0.239 0.284 -0.005 0.029 -5132.10
(0.006)
MO 3023 0.953 0.162 0.201  -0.009 0.035 0.249 0.292 0.064 0.102  -4556.25
(0.009)
AXP 3024 0.952 0.060  0.084 0.061 0.087 0.114  0.148 0.150 0.175  -5345.12
(0.009)
AIG 3024 0.962 0.175 0.205 -0.034 0.002 0.254 0.284 0.008 0.039  -5124.33
(0.007)
BA 3024 0.943 0.064  0.107 0.023 0.064 0.142 0.188 0.097 0.133  -5104.71
(0.010)
CAT 3024 0.975 0.079  0.110 -0.014 0.022  0.143 0.175 0.036 0.062  -5146.20
(0.006)
C 3010 0.942 0.046  0.072 0.067 0.096  0.108 0.149 0.164 0.192  -5426.42
(0.010)
KO 3024 0.954 0.049  0.070 0.034 0.054  0.089 0.113 0.090 0.110 -6146.30
(0.008)
DD 3024 0.966 0.045  0.069 0.024 0.051 0.087 0.114 0.080 0.102  -5609.12
(0.007)
XOM 1278 0.971 0.042 0.060 -0.001 0.027 0.077  0.098 0.044 0.068  -1840.51
(0.011)
GM 3024 0.953 0.067  0.103 0.021 0.056  0.133 0.169 0.086 0.114  -5176.85
(0.009)
HD 3024 0.946 0.069  0.101 0.040 0.074  0.134  0.178 0.120 0.152  -5478.15
(0.009)
HON 3024 0.968 0.157 0.201 -0.012 0.037  0.249 0.298 0.057 0.095  -4818.35
(0.007)
INTC 3024 0.956 0.085  0.136 0.015 0.058  0.183 0.241 0.089 0.134  -5332.29
(0.008)
IBM 3024 0.922 0.043  0.066 0.058 0.090 0.097 0.134 0.153 0.187  -4950.95
(0.012)
JPM 3024 0.973 0.074 0.103 -0.010 0.021 0.129 0.159 0.036 0.065 -5281.74
(0.006)
JNJ 3024 0.959 0.063  0.086 0.023 0.047  0.106 0.129 0.080 0.102  -5504.79
(0.008)
MCD 3024 0.956 0.108 0.146 0.018 0.049 0.173 0.210 0.081 0.107  -5671.51
(0.008)
MRK 3024 0.960 0.105  0.142 0.002 0.035 0.177  0.211 0.064 0.091  -5305.99
(0.008)
PFE 3024 0.946 0.234  0.271 0.003 0.037 0.314 0.352 0.072 0.101  -5315.52
(0.010)
PG 3024 0.956 0.027  0.046 0.027 0.049 0.064 0.086 0.083 0.105  -5674.97
(0.008)
SBC 3024 0.971 0.060  0.095 0.012 0.043 0.119 0.151 0.066 0.091 -5615.86
(0.006)
UTX 3024 0.968 0.047  0.079 0.000 0.033  0.102 0.132 0.051 0.079  -5032.65
(0.006)
V7 1130 0.976 0.068  0.106 0.000 0.047  0.141 0.182 0.073 0.106 -1316.96
(0.011)
WMT 3024 0.979 0.032  0.056 0.016 0.041 0.073 0.098 0.065 0.088  -5664.12
(0.005)
DIS 3024 0.972 0.106  0.143 0.002 0.033  0.168 0.202 0.060 0.086  -5725.56

(0.006)




Table 10: Mean squared errors and MBIC for RV

1 day MSE modes 1 day MSE median 5 day MSE modes 5 day MSE median MBIC at mean
Firm Nobs Ml M2 M1 M2 M1 M2 M1 M2 M1 M2

GE 3024  0.854 0.996 0.954 0.990 0.888 0.957 0.881 0.942 1.006  0.992
MSFT 3024 0.928 0.952 0.933 0.939 0.861 0.898 0.846 0.875 0.993  0.989
HPQ 671  0.997 0.920 1.029 0.974 1.065 0.927 1.145 0.936 0.834  0.457
MMM 3024 0.902 1.000 0.984 0.994 0.958 0.974 0.951 0.965 0.992  0.995
AA 3024 0977 0.999 1.001 0.998 0.977 0.995 0.970 1.000 0.988  0.991
MO 3023 0.930 0.999 0.957 0.967 0.956 0.969 0.941 0.936 0.995  0.993
AXP 3024 0.911 0.930 0.945 0.946 0.832 0.878 0.818 0.863 0.990  0.992
AlIG 3024 0.885 0.946 0.940 0.979 0.962 0.989 0.955 0.987 0.987  0.990

BA 3024  0.927 0.999 0.989 0.959 0.957 0.942 0.978 0.925 0.988  0.988
CAT 3024  0.886 0.942 0.976 0.984 0.962 0.980 0.973 0.975 0.988  0.993
C 3010  0.823 0.899 0.911 0.918 0.817 0.857 0.802 0.850 0.999  0.992
KO 3010  0.934 0.967 0.978 0.978 0.931 0.954 0.913 0.940 0.980  0.986
DD 3024 0.892 0.928 0.988 0.971 0.960 0.929 0.975 0.915 0.994  0.992

XOM 1278 0.905 0.966 0.957 0.980 0.925 0.990 0.915 0.993 0.955  0.962
GM 3024 0.881 0.970 0.940 0.955 0.922 0.946 0.928 0.951 0.992  0.989
HD 3024  0.843 0.935 0.930 0.951 0.890 0.928 0.881 0.916 1.007  0.999
HON 3024  0.972 1.022 1.012 1.016 0.984 1.000 0.985 0.989 0.987  0.988
INTC 3024 0.816 0.893 0.955 0.947 0.914 0.913 0.928 0.894 0.995  0.997
IBM 3024  0.838 0.909 0.922 0.929 0.814 0.836 0.803 0.813 1.000  0.997
JPM 3024 0.944 0.995 0.999 0.988 0.971 0.970 0.960 0.976 1.000  0.992
JNJ 3024  0.926 0.961 0.970 0.967 0.951 0.953 0.949 0.939 0.985  0.989
MCD 3024 0.932 1.011 0.984 0.998 0.956 0.964 0.941 0.948 0.988  0.988
MRK 3024  0.944 0.981 0.997 0.990 0.995 0.973 1.002 0.964 0.990  0.993
PFE 3024  0.979 0.980 0.975 0.976 0.951 0.964 0.934 0.955 1.000  0.995
PG 3024  0.875 0.941 0.913 0.927 0.852 0.892 0.846 0.871 1.001  0.990
SBC 3024 0.890 0.956 0.960 0.964 0.946 0.962 0.963 0.964 0.998  0.994
UTX 3024 0.909 0.980 0.977 0.983 0.959 0.975 0.953 0.967 0.988  0.986

A/ 1130 0.870 0.977 0.962 0.974 0.908 0.945 0.921 0.938 0.957  0.979
WMT 3024 0.925 0.971 1.034 0.981 1.027 0.961 1.062 0.966 0.989  0.989
DIS 3024  0.989 0.976 1.001 0.980 0.969 0.954 0.963 0.951 0.995  0.990

Notes: M1= TARFIMA, M2=ARFIMA
Averages of MSE modes and medians are shown for 1 and 5 day forecasts.
MSE is relative to M3=ARMA model for which MSE is set to 1
MBIC is relative to M3=ARMA model for which it is set to 1 (here we maximize MBIC)

Table 11: Summary comparison for all models

1 day MSE 5 day MSE MBIC
Model mode median mode median mean
M1 28 18 21 21 6
M2 2 10 9 9
M3 1 24
M1=M2 1
GE M1 M1 M1 M1 M1
MSFT M1 M1 M1 M1 M3
HPQ M2 M2 M2 M2 M3

Notes: Ml= TARFIMA, M2=ARFIMA, M3=ARMA
Each entry shows number of cases among 30 firms
when a particular model (M1, M2 or M3) was selected
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Figure 3: Posterior pdfs of normalized log realized volatility forecasts for GE, MSFT and

HPQ
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Figure 4: Posterior cdfs of the median

MSE(ARFIMA) and median MSE(TARFIMA)
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